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1 CaRE Project

With products and individual items that are becoming more and more com-
plex, it is logistics wise (travel restrictions during Covid,...) and for cost reasons
sometimes not possible to dispatch specialists to site. As a result, maintenance
personnel often has no previous experience with a product to be serviced. Nev-
ertheless knowledge is essential for most maintenance and repair works.

The CaRE (Custom Assistance for Remote Employees) is an Siemens Project,
where it is researched how to assist employees during their work at large power
transformers. Those transformers can be seen as singletons due to their vari-
ous di�erent types (like Generator Transformers, Phase Shifters, Shunt Reac-
tors,....). Since several subsystems are required in order to provide the necessary
information to the users, the backend system was designed as a Microservice Ar-
chitecture. With this approach the system should remain scaleable and main-
tainable in many dimensions.

2 Microservices

Since Microservices (MSA) were �rst mentioned by Fowler and Lewis in 2014
[Fowler, 2020] this type of architecture seems to be a paradigm change in soft-
ware development. This can be seen in the Hype Cycle for Application and
Integration Infrastructure published by Gartner in 2019 [Permikangas, 2020].
Many of IT Companies - like the FANG companies - deliver their services based
on Microservices. In comparison to that a widely used architecture is a mono-
lith - were all functionality of an application has to be deployed together. (see
[Newman, 2019]).

2.1 Di�erences between Monolithic, Microservices and Ser-

vice Oriented Architecture

Basically the main features of Service Oriented Architecture (SOA) and Mi-
croservices are pretty the same. Both are relying on (hybrid) cloud environments
to provide and execute applications. Both are splitting huge and complex ap-
plication into smaller parts and can combine one or more services which are
needed in order to create and use applications. Microservices are basically de-
�ned as �independent deployable� modules and can be seen as an extension to
service-oriented architecture (see [Zimmermann, 2016])

In the table below the main di�erences are stated:
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Microservices SOA Monolitic

Architecture
Host Services,
operating
individually

Provide Resources,
commonly used by

services

Single Architecture
with Single

Development Stack

Common use
of

Components

Components not
shared but Shared

Libraries
(connectors, etc.)

Components
shared

Components in
terms of shared

libraries

Granularity
Di�erentiated

Services
Bigger, strong

modular Services
Single Unit

Data Storage Own Data Storage
Commonly used
Data Storage

Mostly one data
Storage

Governance
Collaboration
between teams

necessary

common
Governance

Protocols, Team
overarching

Governance not
necessary

Size and
Scope

Better for small,
web-based
Applications

Better for big
integrations

Size varies, Scope
dependent

Communication API Layer
Enterprise Service

Bus

Typically:
Presentation Layer
- Business Logic
Layer - Data
Access Layer

Coupling and
Cohesion

Limited Context
for the Coupling

Resources are
shared

No - Resources are
shared

Remote-
Services

REST or Java
Message Service

SOAP or AMQP
Independent -
eventually
proprietary

Deployment
Fast and Easy
Deployment

Lack of Flexibility
at Deployment

Lack of Flexibility
and Deployment

Table 1: Di�erences between Microservices, SOA and Monolithics (see
[Talend.com, 2020, Katkoori, 2019])

In Figure 1 the di�erence is shown in a graphical manner. It can be seen
that the main di�erence between MSA and SOA and Monolithic Architecture
is, that it Microservices are typically conducted via multiple databases within
MSA.
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Figure 1: Di�erences between Microservices, SOA and Monolithics, for typical,
respective Architectures

The de�nition and the di�erences against service-oriented architecture leads
to several advantages and disadvantages of Microservices. (see [Sam, 2015,
Eberhard, 2018]).

2.2 Advantages and Disadvantages of Microservices

Microservices have both a lot of advantages and disadvantages. In the following
section some of the most important pros and cons are discussed:

2.2.1 Scalability

Each of the Microservices can be scaled individually. In comparison to mono-
lithic architectures - where multiple instances are hard do implement - it is
possible to implement Microservices in a �ne-grained structure with less ser-
vices. Furthermore it is possible to deploy multiple instances of services for load
balancing reasons. With this scalability it is also possible to exchange services
easy. (see [Sam, 2015, Nemer, 2019, Newman, 2019])

2.2.2 Technology independent

For di�erent purposes di�erent technologies can be used. It is possible to select
the most suitable tool for each task. Each Microservice can easily be migrated
to other - even new - technologies. These technology independence can led
from di�erent database systems, di�erent interfaces up to di�erent programming
languages. (see [Sam, 2015, Nemer, 2019])

2.2.3 Resilient

Assuming, that the network is reliable, Microservices are basically more resilient
than monolithic approaches. If one service fails, the other services may remain
up and running and failures are not cascading so that an app crashes. Even if
other Microservice need to compensate the failed service, values can be cached
and used in case of failures. (see [Sam, 2015, Nemer, 2019])
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2.2.4 Deployment

Microservices also lead to some advantages for development teams and deploy-
ment of services itself. With smaller services it is easier for new developers
to learn the structure. Each Microservice can be deployed independently, as
needed, enabling continuous improvement and faster updates. Speci�c Microser-
vices can be assigned to speci�c development teams, which allows them to fo-
cus solely on one service or feature - also technology wise. This means teams
can work autonomously without worrying what's going on with the rest of the
app.(see [Sam, 2015, Nemer, 2019])

2.2.5 Complexity

The communication between services can be complex. With a huge amount of
services debugging can be challenging if each service has its own set of logs.
Additionally testing might be hard since Microservices might be distributed
over machines and not running on one single computer. (see [Nemer, 2019,
Newman, 2019, Wittmer, 2019])

2.2.6 Controllability

With a huge amount of Microservices relying on each other, simple changes of
APIs are dangerous. These changes need to be backward compatible, otherwise
each of the Microservices relying on the changed one needs to be changed as
well. (see [Nemer, 2019, Wittmer, 2019])

2.2.7 Costs

If Microservices are running on di�erent hosts, the hosting infrastructure, se-
curity and maintenance is more expensive. Furthermore require interacting
services a huge amount of remote calls. This will also increase the network
latency and processing costs. (see [Newman, 2019, Fowler, 2020])

2.3 Boundaries

Both SOA, Monolithic and Microservices have advantages and disadvantages.
Thus Microservices are no patent remedy for each type of application. It has to
be determined if a Microservices architecture has more advantages rather than
disadvantages for the type of application which needs to be implemented. If
using Microservices distributed transactions or the CAP Theorem needs to be
minded. Furthermore an appropriate and good architecture has to meet some
quality criteria.

3 Software Quality

In the IEC 90003:2018 a software product is de�ned as a �set of computer pro-
grams, procedures and possibility associated documentation and data� ([ISO, 2018,

7



P. 3]). The source code quality such products is a major part of the entire quality
of an application. Issues in the source code of application can lead to problems
ranking from exceptions, to application crashes or even to damages at the sys-
tem. According to [Galin, 2018] it must be distinguished between faults and
failures.

� Faults: a software fault is a software error which causes improper func-
tioning of the software. In some software fault cases, the fault is corrected
or can be neutralized by following code lines. E.g.: Exception Handler

� Failures: software failures are disrupting the use of a software and is a
result of an software fault. E.g.: Software closes

In order to both ensure that there are no faults and failures in an software
product, developers need to ensure a proper code quality, but also an archi-
tectural quality. In [Alenezi, 2016] the importance of software architecture is
summarized in six aspects:

1. Understanding: Software architecture is a mechanism in order to simplify
the ability to understand complex and large systems by presenting them
in a higher level of abstraction.

2. Reuse: It support reuse of components and frameworks. There are di�er-
ent promoters for reuse, like architectural patterns, domain speci�c archi-
tecture, components, etc.

3. Construction: It provided some sort of a blueprint for development and
implementation by showing the major components and dependencies be-
tween them.

4. Evolution: Software architecture shows possibilities where a system may
evolve in future.

5. Analysis: It can be seen as a mechanism to analyze the entire system.
These analyzes may also consistency checking, conformance to constraints,
etc.

6. Management: Software architecture can be seen as a huge aspect in any
software development process. Evaluation of an architecture leads to clear
understanding of requirements, implementation plans and possible risks.
This will reduce the amount of rework needs to be done in order to address
problems later in the life-time of the system.

3.1 Quality Attributes

A quality attribute (QA) is a non-functional requirement and a measurable
feature of a system, which is used to determine how well a system satis�es
the stakeholders. In the ISO/IEC 25010 - also known as SQuaRE (Software
product QUality Requirements and Evaluation) -the product quality properties
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are categorized into eight characteristics (see [ISO, 2011a, P. 3]): Functional
suitability, performance e�ciency, compatibility, usability, reliability, security,
maintainability and portability. Each of these characteristics is itself composed
by a set of related sub characteristics.

Figure 2: ISO 25010 Product Quality Model (see [ISO, 2011a, P. 4])

Those quality attributes are strongly related to non-functional requirements
of a system. Those quality attributes must be de�ned before designing the
system, in order to ensure that all of them are met accordingly.

In the next section all the important quality attributes for a Microservice
Architecture are discussed:

3.2 Software Quality Measurement

Measurement in software engineering is seen as a crucial factor to evaluate the
quality characteristics like functionality, usability, reliability and so on. Mea-
surement allows to understand the current situation and helps to come up with
clear benchmarks, that are useful to set goals for future behavior. Whereas
some measurement principles are becoming more and more over stressed, other
equally important design methods have been omitted in the architecture mea-
surement process.

According to [ISO, 2018] the main objectives of software quality measure-
ment are:

� To assist the management to monitor and control the development and
maintenance of software systems

� Observing the conformance of software to functionality and other require-
ments

� Serving as data source for improvement by identifying low performance
and demonstrating the achievements of corrective actions

Some of the quality attributes state in Figure 2 can be measured using vari-
ous characteristics of the software architecture like size, complexity, coupling,
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cohesion or others. Those measures are well de�ned in the IEC 25023 (see
[ISO, 2011b]). Furthermore each quality attribute can be measured by combin-
ing it with others.

In [ISO, 2011a] it is de�ned, that the measurement is a logical sequence of
operation in order to quantify the properties with the respect to a speci�c scale.
The quality characteristics and their sub characteristics can be quanti�ed by
applying measurement functions, which is an algorithm used to combine quality
measure elements. More than one software quality measure may be used to
measure a quality characteristic or their uncharacteristic. An example for this
is stated in [Mordal-Manet et al., 2013] where multiple metrics are combined
together in order to measure a certain property using either composition or
aggregation:

� Composition

� simple or weighted average of the metrics: can be used only when
the di�erent metrics are using same ranges and semantics

� thresholding

� interpolation

� Additionally a combination the the values above can also be used.

� Aggregation (several steps are required)

1. Apply a weighting function to each metric

2. Average the weighted values

3. Compute the inverse function of the average

4 Quality Attributes for Microservice Architec-

ture

According to [Li et al., 2021] there is no relatively systematic panorama for
state-of-the-art quality attributes for MSA yet. It is still unknown how QAs are
impacted in MSA and which QAs are the most challenging one. Hence many
aspects are still unclear, unexplored or even inconsistent. The research team
in [Li et al., 2021] did a systematic literate review of QAs which are the most
concerned ones, and found that those are scalability, performance, availability,
monitorability, security and testability (see [Li et al., 2021, P. 7]) . In their
second research question they tried to �nd tactics, with whom it is possible to
reach those QAs.

4.1 Scalability

Scalability can be done in two dimensions: horizontally and vertically. When
scaling horizontally (scaling out), more resources to logical units are added -
like servers to an already existing cluster. When scaling vertically (scaling up)
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more resources to a physical unit are added (like memory to a single computer).
In cloud environments the horizontal scaling mechanism is called elasticity (see
[Bass et al., 2012, Part II.12]). In [Abbott, 2015] a scale cube with X,Y and Z
axis is de�ned:

Figure 3: The Scale Cube (see [microservices.io, 2021])

4.1.1 Horizontal duplication (X-Axis Scaling)

With horizontal duplication, multiple instances of an application are running
behind a load balancer. If there are N instances, each instance handles 1/N of
the load. This approach is commonly used when scaling an application. Each of
the copies running has potentially access to all data, this may require a higher
amount of memory for the cache to be more e�ective. This approach does not
tackle the problems of an increasing development and application complexity.

4.1.2 Vertical decomposition (Y-Axis Scaling)

With vertical decomposition, an application is splitted into multiple di�erent
services. Each of the service is then responsible for one or more closely re-
lated functions. One possibility to split would be a �verb-based� decomposition
where services with single usecases are implemented (Logical Coupling). An-
other possibility would be to decompose them �noun-based�, where services are
responsible for all operations which are related to a particular entry (Seman-
tic Coupling) (see [Abbott, 2015, microservices.io, 2021]). Also a mixture of
both is possible. When using vertical decomposition the granularity must be
decided carefully in order to get an appropriate balance between scalability and
performance, since the network is an important factor.
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4.1.3 Lookup-Oriented Split (Z-Axis Scaling)

With Z-Axis scaling each server runs an identical copy of the code, which is
similar to X-Axis scaling. The di�erence is, that each server is only responsible
for a part of the data. A component of the server is responsible for routing
requests to the appropriate server. A possible routing criteria would be the
primary key of an requested entity. This splitting method is used to scale
databases, where data is partitioned (or sharded) over a set of servers based
on an attribute of the dataset. Z-Axis scaling comes along with some pros and
cons:

Pros:

� A server only needs to deal with a subset of data

� Cache utilization is improved and memory usage is reduced

� Transaction scalability is improved, since requests are distributed over
multiple servers.

� Fault isolation is easier, since only a part of the data is a�ected

� Graceful behaviour in case of errors is possible

Cons:

� Platform complexity is increased

� Partition Scheme must be implemented, which can be hard if the data
needs to be repartitioned

� Does not solve the problems of increasing development and application
complexity.

4.2 Performance

Performance is the measurement of an systems ability to meet certain timing
requirements as an response of an event. The allocation of di�erent amounts
of resources may in�uence the throughput or the response time of an service.
On the other side the communication among Microservices via the network may
directly impact the performance of systems. Thus performance and scalability
can be rely on each other: Smaller Microservice may increase the scalability,
but may decrease the performance due to a higher amount of interactions be-
tween the services. Whereas the performance may be improved if two Microser-
vices are merged in order to reduce the communication overhead. According to
[Cojocaru et al., 2019] performance tactics may be divided into four categories:
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4.2.1 Resource Management and Allocation

With resource management it is tried to respond in an e�ective way to requests.
According to [Bass et al., 2012] resource demand of systems is not controllable.
With this, e�ective management of the available resources on the response side
can be seen as critical factor in terms of performance. In order to use this
tactic, a performance analytical model is usually using what-if analysis and
resource planning approaches in a systematic manner. As example for perfor-
mance modeling in [Khazaei et al., 2020] 3-dimensional Continues Time Markov
Chain (CMTC) or Fluid Stochastic Petri Nets (FSPN) are mentioned. Possible
performance objectives are latency, costs or resource utilization. Based on the
performance model, engines are necessary for the allocation and management
of containers, virtual machines or physical servers. The main constraint in this
tactic might be searching the best combination of relevant variables and speci�c
objectives. In order to �nd this combination, simulations or experiments could
be performed.

4.2.2 Load Balancing

With load balancing it is tried to distribute the incoming load of a single Mi-
croservice among many instances. With this way the response to requests may
be faster and the available capacitance utilization may be better. Furthermore
it is ensured, that none of the services is signi�cantly overworked in comparison
to other ones. In an MSA the requests to services may form some sort of a
chain. High load on particular services may block the processing of requests
and decrease the performance signi�cantly. To ensure a proper distribution of
the load among all available microservices, a load balancer comes into place.
For microservices there are two types of load balancer which can be seen in 4:

1. Centralized Load Balancing: This is currently the most common way of
load balancing. With this approach a centralized load balancer (on server-
side) is created. This type of Load Balancer usually works with push based
algorithms, like Round Robin, JSO or JIQ (see [Abad et al., 2018]). In
this approach the centralized load balancer is transparent to the clients
and the clients are not aware of the service list. The load balancer itself
is responsible for the server-pool underneath and monitors their health.
A server-side load balancing solution which also comes along with service
discovery is consul.io or Eureka.This approach has its drawbacks when the
load balancer has to deal with a huge amount of clients and can also be
seen as a single point of failure.

2. Distributed Load Balancing: More and more MSA are using an de-central
approach while load balancing. Therefore the client itself holds an load
balancer and gets a list of available servers and distributes the request to
several servers according to speci�c pull-based load balancing algorithms
(see [Rusek et al., 2017]). The client holds a list of available servers and
selects one of the list either randomly or according to an algorithm. Net-
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�ix implemented their own client-side load balancer �Ribbon� which is
also available open-source (see [Net�ix, 2021a]). The active and frequent
pulling of data by the clients may lead into not recent data every time.
As a result this will cause a waste of bandwidth.

Figure 4: Centralized and De-Centralized Load Balancing Mechanisms

4.2.3 Containerization

Containerization is used more and more in the �eld of MSA and provides a
higher performance than virtual machines (VM ), since simple processes are not
enough for Microservices (see [Eberhard, 2018, Part 5.1]). For example a crash-
ing Microservice should not a�ect others or decrease their performance. The
reason is, that each VM ususally has an own guest-operating system, which
causes a huge overhead in terms of memory and storage. The most represen-
tative technology in terms of containerization is Docker. Docker increases the
performance of microservices in two terms (see [Kang et al., 2016]):

1. Containers can share the same host OS and require guest processes to
be compatible with the host kernel. This can reduce the overhead of
communication among di�erent guest operating systems (OS ) for di�erent
container processes.

2. The lightweight characteristics of Docker containers can help creating and
running more microservices, which furthermore contributes to a higher
resource utilization. Furthermore containers can be easily moved to more
performant machines.

Nevertheless containerization has also some drawbacks: all services need to
access some OS-level modules for data (e.g.: in memory state, kernel modules).
This makes it in particular di�cult to hold them portable and scaleable. To
achieve this Kubernetes brings a set of important features:

� Docker-Container can run in clusters and share all resources of those clus-
ter
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� In case of crashes it is possible to restart Docker Container automatically.

� Kubernetes is operating on the same level as Docker-Containers. Thus
Microservices can run without any code-dependencies to Kubernetes.

4.2.4 Pro�ling

With pro�ling it is tried to detect performance issues and make a preparation
for performance optimization. Some architectural design decisions may impact
the performance of Microservice-based systems. Those might be the granularity
or the deployment environment which is selected. With pro�ling it is tried to
address the sources of performance unpredictability accross an Microservice's
critical path. Furthermore it is tried to �gure out potential impacts, bottlenecks
as well as optimizations. Therefore pro�ling analyzes the characteristics of an
Microservice-based system including required memory, CPU or bandwidth and
provides both a scheduling engine and an auto-scaling resource manager with
essential information to optimize the performance. (see [Filip et al., 2018]). The
two most common pro�ling tactics are (see [Nicol et al., 2018]):

� CPU Pro�ling: analyzing the execution time of a service and �nding the
hotspots that needs to be optimized.

� Memory Pro�ling: analyzing the memory state or the memory allocation
events. It is not only used when �nding memory leakages, but also for
optimizing memory usage.

Two well known pro�ling frameworks are Google-Wide Pro�ling (see [Ren et al., 2010])
or Net�ix Vector (see [Net�ix, 2021b]).

The usage of some lightweight pro�lers - like Linux Perf - can lead to an
�always on� approach and support continuous performance assurance. (see
[Nicol et al., 2018]). This should be avoided in order to not increase unnec-
essary costs in terms of data processing and storage. Pro�ling is important for
performance predictability of an Microservice based system and is often needed
for Monitoring and Auditing.

4.3 Availability

Availability measures the ability of a system to repair faults so that the period of
an unavailable service does not exceed a required value. (see [Bass et al., 2012]).
According to[Febrero et al., 2016] availability is a broad perspective and encom-
passes what is normally called reliability. The availability of a system can be
calculated as the probability that it will provide the speci�ed services within
required bounds over a time interval. In order to calculate the availability-rate
shown in 1 where MTBF is the meantime between failure and MTTR is the
meantime to repair is used.
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Algorithm 1 Availability Rate

AvailabilityRate =
MTBF

(MTBF +MTTR)

This formula also has some drawbacks: Scheduled downtime (when the sys-
tem is intentionally taken out of service) may not be considered when calculat-
ing. In those cases the system is marked as �not-needed�. If a user whats to
access the system during this scheduled downtime and the user is waiting for it,
it is not counted against any availability requirements. (see [Bass et al., 2012])
Availability tactics can be grouped into four types:

4.3.1 Fault Monitor

The Fault monitor approach is commonly used for discovering faults of Mi-
croservices through continuous health monitoring using a speci�c component.
In order to ensure a high availability it is necessary to detect or anticipate the
presence of a fault before the system can take actions to recover from faults.
(see [Bass et al., 2012]). Therefore Microservices require continuous monitor-
ing, so that their health can be analyzed automatically and responsively react
to failures with as less human interaction as possible. Below three typical kinds
of fault monitors are described:

� Centralized Monitor: A centralized monitoring system collects the results
of service invocation based on the health analysis provided by the service
discovery mechanism. This updates the service status in the service reg-
istry, which can minimize the downtime of any Microservice during the
recovery from failures. This approach is mostly implemented as service
side application. As a drawback an additional service needs to be de-
ployed, which will consume some resources and may cause a single point
of failure. (see [Cojocaru et al., 2019]).

� Symmetric Monitor: With symmetric monitoring a service approaches its
service neighbors, including successors and predecessors. For example, an
Internet of Things (IoT) watchdog implements this technique for neighbor-
hood monitoring, which is purely symmetric in monitoring relationships.
Broken Microservice instances will be replaced by repaired or replaced by
a replica in another IoT device. As a drawback this approach might lead
to inconsistencies. (see [Celesti et al., 2017])

� Arbitral Monitor: An arbitral monitor detects failures or con�icts based
on a decentralized and independent group of nodes. A detected fail-
ure by a single node must be con�rmed by the majority of nodes in
the arbitrator group. With this method cascading failures can be ad-
dressed and the number of nodes leaving the system can be reduced. (see
[Kakivaya et al., 2018])
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4.3.2 Service Registry

With this approach the location of all running services is stored at a central
point. This central point can be used by other Microservices to retrieve binding
information about other services in the MSA. Microservices might have various
instances deployed and this amount may change from time to time. Thus a
service needs a way to locate the position of another speci�c service to detect
faults with high e�ciency. After startup the service registry registers all the
available services and removes them if - for example - a periodic heartbeat is
not received from the application. Typically there are three approaches for
service registry (see [Haselboeck et al., 2017]):

� Self Registry: each service can register and deregister itself using a local
registry. Therefore the service registry has to store the locations of the
Microservice instances. The client service itself has to implement the
service registry client libraries.

� Third-Party registry: With this approach a third-party registry service,
which does the automatic registration or deregistration of Microservices.
This third-party registry has a registrar component and an additional
service registry which actually stores the locations. With this approach
an external library is no more needed.

� Manual registry: The registration and deregistration of services is done
manually at the service registry. On the one hand this provides a better
interoperability since it supports users to include Microservices from other
systems based on their needs. On the other hand this approach may cause
long time of responding to Microservices with failures since the registry
cannot check the health of the services. Therefore this solution is not
suitable for big systems whose Microservices have been available and stable
for a long period.

The service registry itself also has some drawbacks, since it is a single point of
failure. Additionally the implementation of clients should adapt to all program-
ming languages used.

4.3.3 Circuit Breaker

When using with Microservices, a circuit breaker prevents request to a service
in case of a failure. Whenever a failure is faced the circuit breaker �opens�
depending on a speci�c threshold. After a de�ned time the circuit breaker
closes again and allows request to a Microservice. The breaker will not open
again until another error occurred. This approach is used, if a failure of one
service is cascading to other services which also may lead to the failure of an
entire system. According to [Torkura et al., 2017]a circuit breaker may have
three di�erent states:

� Closed: if the circuit breaker is closed, request to a service are allowed to
be passed to the target Microservice.
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� Open: if the count of faults or timeouts is exceeded, the circuit breaker
will change its state to open. This will prevent requests to be forwarded
to the Microservice.

� Half-Open: After a periodic observation time of the health state, the �half-
open� state may be triggered. This will allow a certain amount of requests
to be forwarded to the service.

In [Montesi and Weber, 2018] three di�erent implementation approaches for the
circuit breaker pattern are mentioned

� Client-Side Circuit Breaker: with this approach a separate circuit breaker
for intercepting calls to an external service is implemented. The main
advantage is, that an open circuit breaker will prevent its target service
from receiving further requests. In contrast to that, clients can be ma-
licious and the information about the availability is no more actual. To
counteract this issue, all clients might regularly ping each target service
to get information about its health.

� Server-Side Circuit Breaker: This approach needs an internal circuit breaker,
which decides whether the invocation should be processed or not. This
requires resources to execute the service-side circuit breaker and receives
messages even if the circuit breaker is open.

� Proxy Circuit Breaker: In this approach uses a proxy between the client
and the service. The proxy can be a single one for multiple services or
also a single circuit breaker for each single service. This way has two main
bene�ts. First, no deep changes need to be made either at the client, nor
at the service. Second, clients and services are equally protected from each
other. Therefore clients are resilient against faulty services and services
are shielded against too many request from a single client. As a drawback
it has to be mentioned, that the proxy needs to be updated every time a
service API changes.

The approach of circuit breakers requires additional requests and responses to
perform some sort of handshaking before each communication. Furthermore it
is challenging to get response in case of open circuit breaker state.

4.3.4 Inconsistency Handler

Consistency in huge MSA is hard to achieve, since users want to have the exact
same answer if forwarded to multiple nodes. Therefore multiple instances of a
Microservice in a MSA also need to interact in parallel with a data repository,
which again creates some challenges in terms of data consistency. According to
the CAP Theorem consistency, availability and partition tolerance are traded
o� between each other. Only two of them can be kept in failure mode. For a
Microservice based architecture that needs to have a high availability and needs
to be partition tolerant - means running over the network - the consistency has
to be limited (see [Furda et al., 2018])
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Inconsistency handler usually have to deal with unstable or unreliable net-
works with limited bandwidth. Therefore it is sometime unfeasible to simulta-
neously access multiple replicas in MSA. All read and write operations are only
done on one replica each time which furthermore leads to temporary data in-
consistencies. This problem needs to be addressed with synchronization of data
throughout all replicas to achieve a momentary consistency of data. The events
can be stored in a database using transaction logs, which then can be replayed
in order to update all other instances of the Microservice. For inter - service
communication asynchronous messaging techniques, like Kafka or RabbitMQ,
are used. Those provide di�erent publish-subscribe techniques to deliver events
to the respective subscriber. (see [Furda et al., 2018])

The �nal consistency may cause some problems when a backup of an entire
system needs to be performed. It might be possible, that the backup stays incon-
sistent because of those two reasons mentioned in ([Pardon and Pautasso, 2017])

� Broken Links: A reference can no longer be followed (e.g.: a Microservice
A cannot be found from Microservice B because it is no longer available)

� Orphan State: This occurs when there is no reference to be followed. (e.g.:
Microservice A is no longer references from the state of the Microservice
B recovered from an obsolete backup)

� Missing State: Occurs whenever multiple instances backups are not con-
sistent. (e.g.: Microservice A remains consistent with Microservice B until
it crashes. After recovery from an obsolete Backup, A does not have the
state corresponding to the latest events logged by B)

Therefore an appropriate disaster recovery plan needs to be prepared during the
architectural phase of the Microservices. It needs to be de�ned how backups
can be performed and also with the consequences of restoring a backup from a
possible inconsistent backup.

4.4 Monitorability

Monitorability is used to measure the ability to support the operations sta� to
supervise the system while it is executing. It is a complex part of Microservice
based systems but becomes an more and more essential due to the high level of
dynamic structure and behaviour of such a system. As an example the monitor-
ing might be on infrastructure level (VM or Container), application level (e.g.:
response time) or on environment level (e.g.: network). Improving monitora-
bility may also have an impact on other QAs like scalability, performance and
availability. (see [Bass et al., 2012])

4.4.1 Generating Monitored Data

Whenever a Microservice needs to be monitored, some data on di�erent levels
(host, platform, service,...) must be collected. It needs to be de�ned which data
should be collected. The data generated at di�erent levels of the architecture
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relates to di�erent concerns and requirements. Monitoring of host, platform
or services metrics can assist to know the runtime information of microservices
in di�erent aspects like available hosts, service reponse time, failure rate and
others. Those metrics are important in terms of Microservice health and help
to decide in relation to performance. In [Mayer and Weinreich, 2018] three dif-
ferent solutions are proposed:

� Instrumentation: Instrumentation service is a prerequisite in order to col-
lect the static and dynamic (runtime) information for each service at dif-
ferent levels. Instrumentation can be again divided into three main tactics:

� Host Instrumentation: Therefore an agent needs to be installed on
each host of the MSA. This agent automatically detects new Mi-
croservices and starts to collect the data.

� Platform Instrumentation: Each runtime environment (eg..: Database
Server, Webserver,...) is instrumented. An agent needs to be installed
on each platfrom at a speci�c host. This implementation is platform
independent from the operating system and can be more technology
speci�c than an agent on the host level.

� Service Instrumentation: Requires an agent for each service. This
provided analysis of runtime metrics and interactions but no infor-
mation about the service runtime environment.

� Logging: With logging all incoming and outgoing requests are logged to a
�le on the hosts �lesystem. Each log entry may represent a speci�c request,
composed by a timestamp, response time, response code and others. These
�les are periodically fetched and analyzed by speci�c logging frameworks
like Amazon CloudWatch or Logstash.

� Distributed Tracing: This tactic allows to determine the initiator of a re-
quest sequence and helps with searching for root causes of issues. Basically
it is logged which service (or instance) called another service (instance).

All of those mentioned tactics need support of other technology stacks which
also can be some sort of a burden for developers.

4.4.2 Storing monitored data

After generating monitoring data (see 4.4.1) the collected data needs to be
stored . Storing of monitoring data can be either central or de-central (see
[Mayer and Weinreich, 2018]):

� Centralized Storage: All data from distributed Microservices is stored at
one central place. It allows the analysis of data in a centralized style with
less administration and overhead needed. However a central storage may
become a bottleneck and also a single point of failure.
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� Decentralized Storage: On each host / platform or service a local com-
ponent is responsible for storing monitored data. With this approach it
is possible to analyze service interaction which is a crucial requirement in
each MSA. This solution provides a higher scalability since the installa-
tion of new services on new hosts will also provide new local storage. As
a drawback a loss of monitoring data in case of unavailability of a local
service can be see. Furthermore the administrative work is higher.

The storage of monitored data is closely related to generating monitoring data,
since the generated data can be stored with this tactic.

4.4.3 Processing monitored data

After generating and storing monitored data, the monitored data itself should
be processed accordingly. With this various kind of monitoring data collected,
targeted processing and analyzing tactics are required to deal with the di�erent
purposes. Mainly there are two di�erent solutions for di�erent purposes (see
[Mayer and Weinreich, 2018]):

� Aggregation: With aggregation the log data is stored in an aggregated
form. With this tactic the amount of storage can be decreased and the
data is available for long term analysis.

� Non-Aggregation: Data is stored in native form which enables detailed
analysis. The data is not lossfully and thus the amount of storage is
higher.

4.4.4 Presenting monitored data

After processing and analyzing the monitoring data needs to be presented and
visualized for various stakeholders (see [Haselboeck and Weinreich, 2017]). Dif-
ferent stakeholders require di�erent views of the system and key metrics to
be visualized in order to be aware of the current state of the entire system
and make on-time decisions (see [Mayer and Weinreich, 2018]. According to
[Li et al., 2021] there are �ve di�erent approaches for presenting monitoring
data:

1. Microservice speci�c metrics for analyzing response time, failure rates,
throughput.

2. IT Landscape speci�c monitoring data allows analysis and long term re-
ports data of available hosts and data centers, host utilization or service
allocation to hosts.

3. Infrastructure speci�c monitoring data visualizes data like CPU and mem-
ory consumption.

4. The map of running services provides an overview of all running services
and their interaction.
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5. All responses from a service are shown. This helps �nding the root cause
in case of service failures.

A solution for monitoring of Microservice is the Elastic Stack (Elasticsearch /
Logstash / Kibana / Beats). Elasticsearch is an open-source REST based search
engine for logs. Logstash is the data-collection and log-parsing engine. Kibana
is the visualization engine for all the collected log and also be used for other
scenarios as well (e.g.: Observation,...) . Beats is a collection of light-weight
data shippers.

Figure 5: Elastic Stack

4.5 Security

Security is the the measure of the systems ability to protect data and information
against unauthorized access while still providing access to people and systems
which are authorized. (see [Bass et al., 2012]) Due to the fact, that an MSA
distributes logic among multiple services, the network interaction is getting
more complex. Thus attackers can exploit this complexity to launch certain
attacks.

4.5.1 Security monitor

Microservices introduce many security challenges to be addressed. Possible con-
cerns are the complex communication infrastructure or the lack of trust on spe-
ci�c Microservices (see [Sun et al., 2015]). Therefore a tactic is needed in order
to �exibly monitor risky aspects of Microservice and their infrastructure to de-
fend against internal and external threads. Security Monitors can either be a
local or external monitor (see [Otterstad and Yarygina, 2017]):

� Local Monitor: is a way to include local security monitors into Microser-
vices to monitor the network events.

� External Monitor: Enables more complex evaluation and an holistic view
of the overall system. Vulnerability information can be directly consumed
by other security applications and used for security tasks such as auto-
mated con�guration of �rewalls and also need to be integrated into Intru-
sion Detection Systems (IDS)

For assessment and monitoring of vulnerabilities and network-related security
also security policies are necessary (see [Alenezi, 2016])

22



� Policies for vulnerabilities monitor:

� Global policy for all the Microservices of an application

� Microservice-speci�c policy targeting speci�c Microservice implemen-
tation technologies

� Virtual Machine and Container Policy at infrastructure level in a
cloud native environment

� Policies for network related security monitor:

� Connection Policy: Determines if a Microservice is allowed to connect
to another Microservice

� Request Speci�c Connection Policy: De�ning what kind of request a
Microservice can make to another Microservice

� Request Integrity Policy: Enforces request to be compliant to an
de�ned schema and that the requested data is not compromised.

4.5.2 Authentication and Authorization

Authentication is a process in which a user or a system con�rms its identity.
Authorization is a mechanism by which a principal is mapped to an action allow-
ing an identity to do. In some extends Microservices therefore have to imitate
what monolithic structures are doing. (see [Jander et al., 2019]) That is each
service is using an own database or shared database that stores credential data
and implements own functions to verify the user independently. This approach
has several drawbacks:

� Joining a new service in the system forces the authentication and autho-
rization to be re-implemented.

� To be trustworthy, it is not enough to secure the Microservices individu-
ally. Communication channels also must be authenticated.

The tactic of authentication and authorization consists of multiple solutions,
three are mentioned below:

� Key Exchange-based communication authentication: The basic mecha-
nism for secure and authenticated communication is executing a key ex-
change between the processes. Key may be passwords, key or asymmetric
key pairs. Therefore the authentication of the exchange is veri�ed by
the processes. The exchanged key is usually associated with all veri�able
roles. An ephemeral key is usually generated by a symmetric authenti-
cation encryption scheme for the validation of encrypted messages, which
also can be tagged with roles that were veri�ed during the key exchange.
This provides both con�dentiality and authenticity. Another technology
would be symmetric AES and the HMAC mechanism (based on SHA256)
to ensure con�dentiality and integrity. (see [Jander et al., 2019]). Key
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Exchange may require a key management and moves the focus of trust
from a small amount of (cryptographic) protocols to various unspeci�c
mechanisms. This again leads to an trade-o� between performance and
security.

� Client Certi�cate: With Transport Layer Security (TLS ) the communica-
tion between Microservices can be secured. Therefore HTTPS, which was
originally based on SSL and now is based on TLS, can be used. TLS is able
to authenticate both sides of a communication channel through server and
client certi�cates (like X509). (see [Walsh and Manferdelli, 2017]). TLS
Based client certi�cates are not used frequently and support should be
invoked by the application source code, since this certi�cate does not have
a strict mandate on the use and validation of certi�cates.

� Federal Identity: With this tactic the host-authenticated TLS tactic is
extended with in-band authentication options which allows Microservices
to use an identity management system that stores the identity of users
for authentication. (see [Fetzer et al., 2017]). The trusted third party
system usually permits in form of tokens (JWT - JSON Web Tokens).
These systems can be implemented as separate service or just as a single
sign-on framework like OpenID Connect, SAML or OAuth. Sibboleth or
PingID are typical solutions for federal identity and security. Deploying
and integrating of such security systems is very complex and requires
special knowledge.

4.5.3 Intrusion Detection

It is necessary to understand the security status of an application and - if
needed - react on security breaches. This is also important if an system is
developed further with new versions and features. Vulnerabilities can be de-
tected either by an local or external security monitor as described in 4.5.1.
Once a vulnerability is detected, actions should be taken immediately in order
to ensure the security of the system. Those actions might be the following (see
[Yarygina and Otterstad, 2018])

� Rollback / Restart: Destroy the existing service instance and restart a
new one with the same or even older con�guration which was working
without problems

� Isolation / Shutdown: Decouple the problematic services physically through
shutting down

� Diversi�cation: Recompilation or binary rewriting to incorporate random-
ness into the executing binaries. Also moving the service to another host
may help to mitigate the attacks.
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Figure 6: Testpyramid (see [Crispin and Gregory, 2009])

4.6 Testability and Documentation

According to [ISO, 2013] software testing is de�ned as:

An activity in which a system or component is executed under
special conditions, the results are observed or recorded and

evaluation is made of some aspect of the system or the component

As the relationship between Microservices might be complex and some Microser-
vices are evolving over time, it is necessary to pay attention to the testability
of Microservices. Testability has a direct impact on performance, availability
and security and is a measure of a system's ability to demonstrate its faults
through (typically execution-based) testing. (see [Bass et al., 2012]). As stated
in Figure 6 the type of testing can be visualized in form of a pyramid with the
following items (see [Sam, 2015])

� Unit Test: Typically Functions and Methods are tested. No services are
started and the usage of external �les and network connections will be
limited (Classes within Service)

� Integration Test: Tests Inbound and Outbound Adapters and their de-
pendencies. (Service Adapters)

� Component Test: Testing is performed on each individual component sep-
arately without integrating with other Components (Entire Service)

� End-to-End Test: End-to-end tests involve the entire system. Sometimes
also the user interface comes into account. (Multiple Services or Applica-
tion)

As stated in the de�nition, testing may be performed on the entire software
system (System Test or Acceptance testing) or on a Module (Unit Test). Those
two types of tests can be automated. When developing in an agile way, the agile
testing quadrants are a good schema to rely on.
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Figure 7: Agile Testing Quadrants (see [Crispin and Gregory, 2009])

4.6.1 Automating Test Procedure

With automated testing it is tried to limit the complexity of the testing pro-
cess using some automatic techniques. This tactic came into place since it is
impossible to test a large amount of Microservices by hand because of the time
needed, the large number of tests, the complexity and the amount time which is
needed to check the results. For e�ciency improvement it is imperative to use
automated testing. In order to implement automatic testing a testing model
needs to be de�ned (see [Sam, 2015]). Examples for tools which will help to
automize tests are Jenkins, Gitlab, Kubernetes and others.

4.6.2 API Documentation and Management

Since Microservices are relying on RESTful Webservices for the intercommu-
nication, an API description is necessary and useful for service testing and
documentation. Continuous updates or upgrades of APIs also require a �ne-
grained documentation. Therefore Swagger (https://swagger.io) is a widely
used tool which provideds such components which are reducing the work for
API documentation. When a RESTful API is con�gured with Swagger, RAML
(https://raml.org/) can also be used to automatically provide a JSON �le as a
resource that will fully de�ne which APIs are available in that RESTful service.
With this tools testing of endpoints can be conducted in an more e�cient way.

Another emerging way is the usage of gRPC (https://grpc.io/), which is a
modern framework for remote procedure calls where service de�nition �les are
exchanged between two parties. gRPC provides code generators, which create
the source code for the respective interface automatically.

4.7 Conclusion

A Microservice Architecture should be embraced with caution and decisions
should be carefully made when deciding to migrate from an Monolithic Ap-
proach to Microservices. Whenever a new MSA should be developed it is easier,
since one can start from scratch. Best practices for Microservice Architecture
(starting from scratch) will be mentioned in section Microservice Architecture
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Best Practices. But if an Monolithic Application should be changed to an MSA
the return on investment should be taken into account. This calculation may
refer to some not tolerable facts in the legacy systems that should be addressed
by the new architecture. The investment means additional e�orts and cost to
implement the system, but also for speci�c QAs of the identi�ed set.

Furthermore the complex relationships among QAs require to be considered
during the migration to MSA, e.g, dependency or trade-o�. On the one hand,
the improvement of one QA may have positive in�uence (dependency) on other
QAs (e.g.: for monitorability would also o�er data support for performance
optimization and capacity planning). On the other hand, addressing one speci�c
QA may negatively impact certain other QAs. To summarize, there may be
trade-o� relationships between two or more di�erent QAs.

5 Microservice Architecture Best Practices

In order to create an sustainable architecture for Microservices some principles
must be met (see [Eberhard, 2018]):

� A Microservice Architecture must split its item into modules.

� Modules should interact via non-proprietary interfaces

� Certain modules should not depend on implementation details of other
modules

� Integration options must be limited and standardized

� Communication should be limited to RESTful Webservices or Messaging
Protocols. Authentication must be standardized on all services.

� Each Module should have an own continuous delivery pipeline

� Operation should be standardized: Same con�guration, deployment, log
analysisMicroservice Architecture of CaRE,..

� Modules should be resilient. Modules should not fail if other modules are
not reachable.

� Two independent layers in terms of architectural approach:

� Macro Architecture: Decisions regarding all modules (e.g.: Authen-
tication)

� Micro Architecture: Decisions which can be made for each single
module. (e.g.: Database System)

But if all of those principles are met, it is not sure that the architecture is well
designed and without mistakes. The complexity of an MSA leads to attack
surfaces in terms of bad decisions when de�ning and implementing the architec-
ture. Therefore it can be distinguished between Antipattern and Code-Smells.
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Sometimes Antipattern and Smells are seen as one same issues, also the tran-
sition in literature is unclear and sometimes blurred. In [WikiWikiWeb, 2021]
Architectural Smells and Antipattern are de�ned as followed:

� Architectural Smells: Smells should be investigated. Smells may and may
not be bad.

� Antipattern: Will lead to worse design of a system. Antipattern are always
bad and should be solved immediately.

In the following sections some Architectural Smells and Antipattern in relation
to Microservices are discussed. It was tried to distinguish between Bad Smells
and Antipattern, but - as mentioned - this di�erence is blurred.

5.1 Architectural Smells

In this part some Architectural Smells within MSA are discussed. It is also
discussed how such smells can be prevented and/or solved.

5.1.1 Hard-Coded Endpoints

Hard-coded IP Addresses and Ports of the service which needs to be used.
This leads to problems when the service location needs to be changed. (see
[Pigazzini et al., 2020]) This could be solved by using either a service discovery
or a well designed DNS System with the ports set in an con�guration �le.

5.1.2 Shared Persistence

Di�erent Microservices are accessing the same database. In worst kind, dif-
ferent services are using the same entities of a service. This approach cou-
ples the Microservices connected to the same data and reduces the service
independence. (see [Pigazzini et al., 2020]) Solutions for the smell are (see
[Taibi and Lenarduzzi, 2018]):

� usage of independent databases for each service,

� usage of a shared database with a set of private tables for each service
which can only be accessed by the service, or

� usage of a private database schema for each service

5.1.3 Independent Deployability

In MSA each service should be running independent from other service, which
means that it should be possible to deploy and undeploy a Microservice indepen-
dently from others. (see [Newman, 2019]) This also implies, that a Microservice
can be started without waiting for other Microservices to be running.

Container Systems (like Docker) are providing an ideal way to deploy inde-
pendently, if each service is running in an own container. If two services (A &
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B) are placed in the same container, both of them would operationally depend
on each other, since launching an new instance of service A would also start an
instance of service B.

5.1.4 Horizontal Scalability

A consequence of independent deployability (5.1.3) is the possibility of adding
and removing replicas of a Microservice. In order to make sure, that the architec-
ture his horizontal scaleable, all replicas of Microservice A should be reachable
by the Microservices invoking A.

This smell occurs when no API Gateway is used or locations of other services
are hard-coded into the source code (Endpoint-Based service Interactions). To
solve the smell of Endpoint-Based service interactions, a service registry should
be implemented. (see [Abbott, 2015])

5.1.5 Isolation of failures

A Microservice can fail for many reasons: Hardware issues, network issues, ap-
plication level issues, bugs,... and becomes unavailable for other Microservices.
Furthermore the communication may fail due to the high complexity of the en-
tire systems. Therefore Microservices should be designed in order to tolerate
such failures and still remain up and running. Failures should not be cascaded
to underlying services, which means that a failure in Microservice A results in
triggering an failure in Microservice B. The most common solution is to use a
Circuit Breaker (see 4.3.3). (see [Jamshidi et al., 2018])

5.1.6 Decentralization

In all aspects of Microservice-based Applications decentralization should oc-
cur, which implies that also the business logic should be fully decentralized
and distributed among the Microservices. (see [Zimmermann, 2016]) This oc-
curs whenever a Enterprise Service Bus (ESB) is misused. Whenever a ESB is
placed as a central hub - with the other Microservices as spokes - it becomes
an bottleneck. This approach may lead to undesired centralization of business
logic. (see [Rusek et al., 2017])

5.2 Anti Pattern

As already mentioned Anti-Pattern are leading to a worse design of an Archi-
tecture. According to [Tighilt et al., 2020] Antipattern can be divided into four
groups:

� Design Antipattern

� Implementation Antipattern

� Deployment Antipattern

� Monitoring Antipattern
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5.2.1 Design Antipattern

In this section examples for Antipattern related to a bad design of Microservices
are discussed.

� Wrong Cut: Occurs if Microservices are split on the basis of technical lay-
ers (presentation, business and data-layers) instead of business capabilities
and leads to a higher complexity. In order to mitigate this, a clear analysis
of business processes needs to be performed. (see [Taibi and Lenarduzzi, 2018])

� Cyclic Dependencies: In cyclic dependencies a Service B is called by A, B
calls C and C again calls A. Microservices involved in cyclic dependencies
can be hard to maintain or reused in isolation (see [Pigazzini et al., 2020]).
As a solution the cycle should be re�ned and an API Gateway should be
applied.

Figure 8: Cyclic Dependencies

� Nano Service: Single Microservice should be designed in order to ful�ll
single business capabilities, not more but also not less. Nano services
may increase the opportunities for reuse and help developers to focus on
important Microservices. Nevertheless they require more developers and
the context is switching often. During runtime Nano Services are creating
more overhead and communication. (See [Pigazzini et al., 2020])

� Mega Service: As opposite too Nano Services, also Mega services should
be avoided. Microservices should be designed to ful�ll only one business
capability. Mega Services are di�cult to test and also create maintenance
e�orts and increased complexity. (see [Pigazzini et al., 2020])

5.2.2 Implementation Antipattern

In this section examples for Antipattern related to implementation of Microser-
vices are discussed.
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� Shared Libraries: Microservices should not share runtime libraries and
source code directly. This somehow breaks the boundaries between Mi-
croservices, which then cannot be seen as independent and independent
deployable. (see [Pigazzini et al., 2020])

� Too many standards: Although Microservices are allowing the usage of
di�erent technologies, too many di�erent protocols, frameworks, develop-
ment languages etc. are used. This may lead to problems in companies, es-
pecially in the event of developer turnovers. (see [Taibi and Lenarduzzi, 2018])

� Too new technology: The technology used needs to be de�ned will. Too
new technology is not always the best choice, since it might not be fully
developed. (see [Taibi and Lenarduzzi, 2018])

Depending on the de�nition of Antipattern, also Hard Coded Endpoints (5.1.1)
can be seen as an implementation Antipattern.

5.2.3 Deployment Antipattern

In this section examples for Antipattern related to deployment of Microservices
are discussed.

� Manual Con�guration: Basically Microservices are relying on some sort of
automation. Everything which is possible, should be automized. There-
fore a con�guration �le for each Microservice is not the best solution.
Instead a con�guration server should be used which automizes the con�g-
uration process. (see [Taibi and Lenarduzzi, 2018])

� No Continuous Integration (CI) / Continuous Delivery (CD): The indepen-
dent deployability of Microservices also o�ers the possibility to apply iter-
ative continuous development and deployment (DevOps) processes. The
integration of DevOps results in a reduced delivery time, increased de-
livery e�ciency, a decreased time between releases and a higher software
quality. (see [Taibi and Lenarduzzi, 2018])

� No API Gateway: Microservices are communicating directly with each
other. If no API Gateway is in place, the service consumers are also
communicating directly with the Microservices. This increases the com-
plexity of the system but also makes a system harder to maintain. (see
[Tighilt et al., 2020])

� Timeouts: The availability of a Microservice refers to the possibility for
each service consumer to connect and send a request. Responsiveness is
the time which is taken by the service to respond to a certain request. In
distributed systems consumer applications / tasks use timeouts to handle
the unavailability or unresponsiveness of a service. It is hard to �nd a
right timeout value: a too short value will quickly lead to exceptions,
a too long value will force clients applications to wait too long before
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stopping the request. As a solution Circuit Breaker (4.3.3) can be used.
(See [Pigazzini et al., 2020])

� No API Versioning: In some cases multiple Versions of APIs must be
exposed by a service. This is usually the case if major changes had been
done on an particular Microservice. Therefore a version number can be
part of the request URL or the version can be inserted into the HTTP
header of the request. (see [Taibi and Lenarduzzi, 2018])

5.2.4 Monitoring Antipattern

In this section examples for Antipattern related to monitoring of Microservices
are discussed.

� No Health Check: Since a Microservice can be deployed everywhere and
also can be unavailable due to certain reasons, the status of a Microservice
might be unknown. Therefore an health check API endpoint should be
implemented, which periodically veri�es the health status and the ability
to answer requests. (see [Pigazzini et al., 2020])

� Local Logging: During runtime each Microservice produces a lot of in-
formation with logging. These logs are usually stored directly on the
�le system and cannot be accessed directly. Therefore a central log-
ging service should be implemented and used (4.4) . Distributed log-
ging mechanisms are easy to implement and make debugging easier. (see
[Pigazzini et al., 2020])

� Insu�cient Monitoring: If Microservices are part of Service Level Agree-
ments (SLA), the behavior and performance is crucial. Insu�cient Moni-
toring is linked to �Local Logging� and may hinder maintenance activities
in a Mircoservice-based system, because failures become di�cult to catch
and performance tracking is not available. This can even a�ect the ability
to comply with the SLA. To solve this a global monitoring tool should be
implemented. (see [Pigazzini et al., 2020])

6 Microservice Architecture of CaRE

In this section the Microservice Architecture of CaRE (Custom Assisstance for
Remote Employees) will be described. With all quality aspects and best prac-
tices in mind an Microservice Architecture for installation and commissioning
of Transformers was created. An architectural overview is shown in Figure 9.
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Figure 9: Architectural Overview of CaRE
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6.1 Microservices

For the proof of concept, each business capability (or process) was developed as
an own service. Each of those Microservices was implemented as a standalone
service with its own database. For now, all services were implemented in .net
Core and can thus run in own Docker Container. Thus the following services
were implemented:

� Project Information: Holds all the information about a single project.
Basic Information about Projects is collected from the external Services
�Technical Database� and �Transformer Assembly Manager�.

� Arrival Inspection: With Arrival Inspection the process of Arrival Inspec-
tion is reproduced. All information regarding Arrival Inspection is col-
lected and provided. Therefore the Microservice connects to the external
services �Technical Database� and �Transformer Assembly Manager�

� Assembly Inspection: With Assembly Inspection the process during Trans-
former Assembly is reproduced. The Assembly Inspection therefore get
design and structure information from two external services �Technical
Database� and �Transformer Assembly Manager� and sends the respec-
tive data to the respective sub-services. If a part is not available at the
respective Transformer, no information will be sent to the respective Mi-
croservice.

� Bushing Inspection: This Service is responsible for the process of
Transformer Bushing installation and commissioning.

� Cooling Inspection: This Service is responsible for the process of
installing and commissioning the Cooling System of a Transformer.

� Protection Devices: This Service is responsible for the process of
installing and commissioning the Protection Devices. It was decided
to use an single Microservice here, because those devices are changed
frequently and each change must be logged accordingly. It must be
ensured, that the history of changes is not compromised.

� Tap Changer Inspection: This Service is responsible for the process
of installing and commissioning the Tap Changers of Transformers.

� Printed Text Analyze: In some cases long serial numbers need to be in-
serted in order to track them. From usability perspective this is not ideal..
So an service was developed which does OCR on the images which were
send. This service is relying on an external OCR Service in Azure.

� Drawings: Since a lot of drawings are necessary for Transformer com-
missioning an own service for maintaining and storing of those �les was
developed. For now this service is not connected to any other external
services, but it would be possible to connect it to an company-internal
drawing repository.
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� Marker: In some cases �digital redlining� needs to be performed, which
means that annotations are done on pictures or changes need to be marked
on drawings. These information also need to be stored persistent.

For creating the database structure of each service the tool �Entity Developer�
was used. With the tool it is possible to graphically create the database structure
and automatically generate the database tables and ORM (Object Relational
Mapper) classes. In Figure 10 a screenshot of the - rather easy - database
structure of the Marker Service is shown.

Figure 10: Marker Database Structure in Entity Developer

6.2 Auxiliary Systems and Services

6.2.1 Logging

For logging purposes a central logging system with the Elastic Stack was cre-
ated. For the proof of concept Serilog (https://serilog.net/) was used in each of
the services for Logging. In contrast to Logging Frameworks like log4j, NLOG,
log4net and others, Serilog provides the possibility to store log �les in a struc-
tured way. This means, that also objects - in form of a JSON String - can be
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logged. With sinks extensions it is possible to either store data on the �le system
or send it to central repositories. In the following code snipped the con�guration
of the Logging Service is shown.

_Log = new LoggerConf igurat ion ( )
. MinimumLevel . Control ledBy ( l e v e l Sw i t ch )
. Enrich . FromLogContext ( )
. Enrich . WithCaller ( )
. WriteTo . Console ( outputTemplate : outputTemplate ,

theme : SystemConsoleTheme . L i t e r a t e )
. WriteTo . E l a s t i c s e a r c h (

new Ela s t i c s ea r chS inkOpt i ons (
new Uri (" http :// l o c a l h o s t : 9200" ) )
{
IndexFormat = cMyProcessName + "= s e r i l o g ={0:yyyy .MM}" ,
})

. CreateLogger ( ) ;

_Log . Verbose (" Logging s t a r t ed " ) ;

Each log message was enriched with the following �elds:

� Hostname: To make it easier to �nd the respective machine where the
Microservice is running on

� Topic: The Process Name

� CallerClass: the Class where the Log Message was generated

� Caller: the Caller method where the message was generated

With these additional �elds, �ltering of certain sources or roots is easier. In
Figure 11 the resulting log messages in Kibana can be seen.

Figure 11: Serilog messages in Kibana
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6.2.2 Identity Management

In terms of Microservice Security as basis the �IdentityServer4� (see [IdendityServer4, 2021])
was used, which is an open-source OpenID Connect and OAuth 2.0 framework.
On database side again an PostgreSQL database server was used. The passwords
are stored with the library bcrypt (see [Bcrypt, 2021]). Whenever a request to
the Identity Service is sent, the identity service returns an token in JsonWebTo-
ken (JWT) Format. In this token the following information - within other - is
sent to the client:

� Expiration Time

� Authentication Time

� Issue Time

� Scopes

� Refresh Token

In each of the requests to the Microservices, the Token has to be added to header
in terms of Authorization: Bearer <Token>. If the token is no more valid or not
available, each endpoint returns the HTTP Status code 401 for unauthorized.
The following code snippet shows how it is ensured, that the JWT token is used
in a respective Microservice:

s e r v i c e s . AddAuthentication ( opt ions =>
{

opt ions . DefaultScheme = JwtBearerDefaults . AuthenticationScheme ;
opt ions . DefaultAuthenticateScheme = JwtBearerDefaults . AuthenticationScheme ;
opt ions . DefaultChal lengeScheme = JwtBearerDefaults . AuthenticationScheme ;

} ) . AddJwtBearer ( opt ions =>
{

opt ions . TokenValidationParameters = new TokenValidationParameters
{

Val idateAudience = f a l s e ,
Va l i da t eL i f e t ime = true ,
L i f e t imeVa l i da to r = ( notBefore , exp i r e s , secur ityToken , va l idat ionParameter ) =>
exp i r e s >= DateTime .UtcNow

} ;
opt ions . Authority = s e c u s e t t i n g s . I d en t i t yUr l ;

} ) ;

. . .

pub l i c void Conf igure ( IApp l i c a t i onBu i l d e r app , IHostingEnvironment env )
{

. . .
app . UseAuthent icat ion ( ) ;
app . UseAuthor izat ion ( ) ;
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6.2.3 External Services

Some of the Microservices implemented are getting their information from ex-
ternal systems. Those systems are:

� Technical Database: In this database design parameters for transformers
are stored. E.g.: Type of Coolers, Bushings,...

� Transformer Assembly Manager: In this database information about the
Transformer assembly is stored. E.g.: Detailed Outline Drawings, Amount
of Coolers, Bushings,....

� Text Analyze (Azure): The OCR text analyze is used from Azure in order
to convert long serial - numbers into machine readable characters.

6.3 API Gateway

As API Gateway Consul.io was used and installed on an virtual machine with
Ubuntu as OS. In this case consul acts as Service Registry and API Gateway.
All above mentioned Microservices were added.

Figure 12: Microservices in Consul

Additionally routes were created: if a request path contains the service name,
it will be forwarded to the respective service. e.g.: A request at the API Gateway
to http://<ip>/arrivalapi/something will be directly forwarded to the Arrival
API. For each Mircoservice two checks were implemented:

� SSH TCP Check on Port: This check simply veri�es, if a respective port
is open and reachable. This also implies that the machine or the container
is at least reachable.
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� HTTP check on �http://<ip>/health�: Each Microservice has an end-
point which responds its current status with some metrics in regard to the
service and the environment. These metrics can then be used for further
monitoring. The �elds are:

� Memory consumption

� Hostsystem

� Machinename

� Uptime in minutes

� Each Disk with capacity, free space and free space in percent.

Figure 13: Microservice Health Check in Consul

6.4 Documentation

The documentation of each Microservice is done with Swagger. This documen-
tation is only available internally and not visible via the API Gateway. Nev-
ertheless this provides an easy and straight forward way to test the respective
endpoints during development. In order to provide this sort of documentation,
the following Nuget Packages were used:

� Swashbuckle.AspNetCore

� Swashbuckle.AspNetCore.Swagger.UI

� Swashbuckle.Core

With the following code snippets, each endpoint in a Controller is automatically
parsed into an Swagger endpoint with the respective parameters and documen-
tation:

s e r v i c e s . AddSwaggerGen ( c =>{
c . SwaggerDoc (" v1 " , new Microso f t . OpenApi . Models . OpenApiInfo
{

T i t l e = "Marker API" ,
Vers ion = "v1 " ,
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Desc r ip t i on = "API f o r Annotating Images"
}
) ;

}

. . .

pub l i c void Conf igure ( IApp l i c a t i onBu i l d e r app , IHostingEnvironment env )
{

app . U s eS t a t i cF i l e s ( ) ;
app . UseSwagger ( ) ;
app . UseSwaggerUI ( c =>
{

c . SwaggerEndpoint ("/ swagger /v1/ swagger . j son " , "Marker API " ) ;
c . RoutePref ix = St r ing . Empty ;

}

. . .
) ;

The output inside a browser window is shown in Figure 14.
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Figure 14: API documentation with Swagger

7 Conclusio

As an more and more accepted and adopted architectural style, MSA overcomes
the limitations of the traditional monolithic architecture. During implementa-
tion of this proof of concept a lot of refactoring was necessary in order to meet
all the desired quality attributes. First of all it is hard to �nd the correct granu-
larity for the Microservices. In the �rst approach it was more or less a monolith,
which was caused due to a implementation start without a clear big picture, no
strategy and no structure. Without those, the implementation will surely lead
into anti-pattern and architectural smells.

After the �nal de�nition of the entire working process of the supervisors at
site, those process steps were meant to be a single Microservice. This process
was identi�ed with the user centered design approach and through interviews
with the users which will later work with the system. In order to ensure a proper
code quality, test driven development with NUnit was used for both the model
and RESTful interface.

With all those Microservices in place, it could be seen that the Logging into
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�les was not the best solution to debug. Therefore the interface to the Elastic
Stack was implemented. After that it could be seen, that the Identity Manag-
ment should be taken into account right from the beginning of the programming.
The integration of the Identity Mangement into already existing Microservices
took a lot of work and refactoring. If it is integrated from scratch, the work
which needs to be spend, will decrease signi�cantly.

Since the CaRE System is a proof of concept Scalability, Availability and
Performance were not taken into account in terms of the Microservices. At User
Interface level the performance of the entire application was of course measured
during the usability tests. In case of unavailability of the Microservices, changes
on UI level were bu�ered and later synchronized with the Microservice.

Sometimes it makes sense to make use of already existing services rather than
implementing them again. As an example in the CaRE architecture the Text-
Analysis needs to be mentioned. If - for example - a system requires language
processing, it also makes sense to use already existing services.

Additionally the integration of the external services - Technical Database
and Transformer Assembly Management - needs to be mentioned. Due to data
security and restrictions within Siemens, it was hard to get access to those ser-
vices, even if they are crucial for the entire application. The company itself
feared data breaches and / or data loss, since some design speci�c data is trans-
mitted outside the Siemens Intranet. In order to come over that, only read
access to well de�ned endpoints was granted, which was also done with JWT
Tokens and de�ned scopes. Intentionally it was planned to also integrate the
drawings database directly to the system. Unfortunately this was prohibited,
so a simple �le upload was implemented for this prove of concept.

To summarize it needs to be mentioned that a clear understanding of the
big picture is necessary before starting with implementation, otherwise a lot of
refactoring needs to be done. Furthermore the best solution must be found for
each individual project. Solutions of big players like Net�ix, Facebook and so
one sometimes do not really �t for small applications and vice versa. Even if
the usage Microservice architecture is emerging, it is not always the best choice
and also needs to be investigated carefully.
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