
Glossary of Software Architecture Terms

Roman Kern <rkern@tugraz.at>
Institute for Interactive Systems and Data Science,

Graz University of Technology

Version 1.2.1, 2020/21

Abstract

This documents represents a list of important terminology for the software
architecture course. Please beware that this is not an exhaustive list and some
important terms might be missing. Although this document can be used a learn-
ing aid, it is by itself not su�cient for a proper understanding of the content of
the course. In the case you would like to see additions to this document, please
inform the author via e-mail.

Addressability Ability to model the scoping information in a consistent way.

A�erent Coupling The number of classes outside a category that depend upon classes
within this category.

Anarchic Scalability Goal to achieve for systems which are distributed with scala-
bility in mind and the components are developed independently.

Application Components Components in the implementation architecture captur-
ing the domain level responsibilities.

Approximate Accuracy Instead of delivering an exact result, an approximation of
a result is computed.

Architectural Smell Indicator for a potential quality impairment in the software
architecture, e.g., cyclic dependencies.

Aspect Oriented Programming Programming paradigm where cross-cutting con-
cerns are factored out, e.g. separate code for logging.

Asynchronous Communication Exchange of data between components, where
the requester does not wait for the response.

At-Least-Once In a streaming setting an event is guaranteed to be processed, but
might be processed multiple times, e.g. no missed events, but duplicates, when
counting.

Batch-Sequential Special case of the data-�ow architecture, where each �lter waits
for the completion of its predecessor.

Behaviour Description of how the system achieved what it is intended to do.

1



Blackboard Type of data-centric architecture, where clients connect to a central
server, which is responsible for data management and informs the clients of
changes within the data model.

Blob A single component with too many responsibilities, e.g. a component to rule
them all.

Callback Communication Exchange of data between components, where the re-
quester does not wait for the response, but instead gets the answer asynchronously
via means, which have been established beforehand.

CAP Theorem Consistency, Availability and Partitioned - a distributed system can-
not completely achieve all these three criteria, a trade-o� is necessary.

Code on Demand In a client server setting, the server might respond with an exe-
cutable/interpretable script in order to extend the functionality.

Code Smell Indicator for a potential quality impairment in the code, e.g., god class,
blob.

Command Cluster A set of components where each of them only contribute few
responsibilities.

Component Stereotype Assign a well known semantic to a component, e.g. user
initiated components in the UI.

Conceptual Architecture Model of the architecture focusing on domain level re-
sponsibilities, i.e. what groups of functionality does exist and how do these
groups interact to achieve a certain goal, e.g. a single use case.

Concurrent Subsystem Abstraction of a number of components, which can be seen
as a separate independent system, e.g. a database server.

Container Components Components in the implementation architecture designed
to give a execution environment (usually for application components).

Cohesion Degree on how strong the responsibilities of component relate to each
other, i.e. how clear is the separation of the responsibilities.

Constructive Cost Model (COCOMO) Method to estimate the cost of building a
(software) system.

Coupling Degree on how strong components depend on each other.

Cross-Cutting Concerns Requirement not covered by a single component, but each
component might be e�ected.

CRUD Create, Retreive, Update & Delete

Cyclomatic Complexity Measure for the complexity of a system/program based on
the control �ow graph.

Data-Centered Architecture An architecture with the goal to achieve data integrity,
typically by choosing a central component for data management, e.g. a database.

2



Data-Flow Architecture An architecture with the goal to achieve decoupling be-
tween components, by de�ning a data �ow (pipes) with a series of transforma-
tions (�lters).

Design by Contract Software design principle guided by the de�nition of rules how
the objects interact, e.g. via preconditions, postconditions and invariants.

Development-Time Binding Binding of services during build time, i.e. the devel-
oper speci�es which services are used.

Distributed Computing Systems designed to execute code in parallel, with a low
degree of shared resources, e.g. run an individual nodes.

E�erent Coupling The number of classes inside a category that depend upon classes
outside of this category.

Exactly-Once In a streaming setting an event is guaranteed to be processed exactly
once, e.g. no duplicates or missed events when counting.

Executable Prototype Prototype designed to serve as a starting point of the system
development, where iteratively more and more functionality (and components)
are added.

Execution Architecture Model of the architecture focusing on the runtime aspects,
i.e. what types of parallel executing components exist.

Fault Trees Model Models of the system designed to capture the dependencies be-
tween components in terms of error propagation, e.g. component A fails if
component B or C fails.

Functionality Description of what the system can do.

Idempotence The same operation has the same e�ect applied once or multiple times.

Implementation Architecture View of the architecture focusing on how the sys-
tem is build.

Information Flow Connector used in the conceptual architecture used to model
what type of information is needed for component to accomplish its respon-
sibilities.

Infrastructure Components Components in the implementation architecture de-
signed to make the system run.

Instability Index that indicates the stability of a component/sub-system.

Interceptor Pattern Architecture pattern where components allow other compo-
nents to register themselves. As soon as a certain even occurs the registered
components are called back.

Kappa Architecture Architecture designed for distributed systems processing data
streams.

Lambda Architecture Architecture designed for large data driven systems consist-
ing of a batch layer, service layer and speed layer.

3



Law of Demeter Principle that states, that methods should only be invoked that are
directly accessible (to reduce the amount of changed entities in case of refac-
toring).

Layered Architecture Architecture pattern that organises the components into in-
dividual layers (on top of each other) with restrictions on the connections be-
tween the components.

Lines of Code The count of source code lines, excluding comments, empty lines, etc.

Liskov Substitution Principle Contract between a client and a class, which guides
when an object can be substituted (in regard to the pre- and postconditions).

MeTRiCS The non-runtime quality attributes: maintainability, evolvability, testabil-
ity, reusability, integrability, con�gurability, scalability.

Micro-Batch In a streaming setting multiple events are collected and processed as
group instead of individually (improves throughput).

Micro-Service A system consistingdistributed, streaming of a number of indepen-
dently deployable services.

Mock-Up Schematic sketch, on how the user interface might look like and how the
interaction might look like.

Model Abstraction of the system, focusing on a single (or multiple) aspect, e.g. se-
curity, domain level responsibilities, executions.

Noti�cation Architecture Architecture patterns with the callback mechanism as
the central element to model the process �ow.

One-at-a-Time In a streaming setting each events is processed individually (im-
proves latency).

Open-Closed Principle Design software entities in such a way, that is easy to ex-
tend them without the need to modify them.

Parallel Computing Systems designed to execute code in parallel, with a high de-
gree of shared resources, e.g. memory.

Peer to Peer Architecture based on the client-server pattern, where each nodes is
client and server at the same time.

Pipes and Filters Data-�ow architecture based on components (�lters, the process-
ing unit) that are connected via pipes (communication channel), ideally the �l-
ters are independent from each other.

Pipeline Simple variation of the pipes and �lter architecture, where the topology of
the �lters represents a single chain.

PURS The runtime quality attributes: performance, usability, reliability, security.

Push/Pull Noti�cation A push noti�cation contains all relevant information for
further processing, the pull noti�cation just contains the minimum (if the lis-
tener requires additional information it needs to pull it from the source).

4



Principle of Least Knowledge Minimise dependencies via keeping references to
other components minimal, see also Law of Demeter.

Quality Attributes Key characteristics of a software system, including the run and
the build time.

Repository Type of data-centric architecture, where clients connect to a central
server, which is responsible for data management.

REST Representational State Transfer

RESTful A set of guidelines to help independent components (services) to work to-
gether (interoperable).

Rich Client Clients that implements a large part of the business logic, typically desk-
top applications.

ROA Resource-Oriented Architectures.

RPC Remote Procedure Call

Runtime Binding The services, which are used by the system are de�ned during
runtime, i.e. at startup the services are looked-up.

SaaS Software as a Service

Separation of Concern Principle to design systems in a way that the individual re-
sponsibilities (e.g. functionality) are clearly separated and assigned to individ-
ual components.

Share Nothing Architecture Highly scalable architecture based on distributed com-
ponents, that operate independent from each other.

Synchronous Communication Exchange of data between components, where the
requester does wait for the response.

SOA Service Oriented Architectures

SOAP Simple Object Access Protocol - a protocol designed to exchanged structured
information between services (used for method calls).

Supernode Peer node within a peer-to-peer architecture that serves additional pur-
poses.

Technical Prototype Prototype designed to test out a single, isolated aspect of the
system (proof of concept). Should be not be used as base for the development
of the system.

Time to Market Time it takes to ship the (�nished) product (system).

Thin Client Clients that implement only a small part of the application logic, typi-
cally (traditional) web applications.

Types of Models There are a number of ways how models can be categorised. One
of the most important is the distinction between structural and behavioural
models, i.e. between the static of the system and the dynamics of the system.

5



Uniformity Goal to keep the communication in a consistent way, e.g. data structures
and protocol is shared between many components.

WSDL Web Services Description Language - language designed for the speci�cation
of interfaces, in particular for services.

6


